Efficient Inference in Large Discrete Domains
نویسندگان
چکیده
In this paper we examine the problem of inference in Bayesian Networks with discrete random variables that have very large or even unbounded domains. For example, in a domain where we are trying to identify a person, we may have variables that have as domains, the set of all names, the set of all postal codes, or the set of all credit card numbers. We cannot just have big tables of the conditional probabilities, but need compact representations. We provide an inference algorithm, based on variable elimination, for belief networks containing both large domain and normal discrete random variables. We use intensional (i.e., in terms of procedures) and extensional (in terms of listing the elements) representations of conditional probabilities and of the intermediate factors.
منابع مشابه
Probabilistic Inference with Large Discrete Domains
The straightforward representation of many real world problems is in terms of discrete random variables with large or infinite domains. For example, in a domain where we are trying to identify a person, we may have variables that have as domains, a set of all names, a set of all postal codes, and a set of all credit card numbers. The task usually reduces to performing probabilistic inference, i...
متن کاملEfficient Bayesian Parameter Estimation in Large Discrete Domains
We examine the problem of estimating the parameters of a multinomial distribution over a large number of discrete outcomes, most of which do not appear in the training data. We analyze this problem from a Bayesian perspective and develop a hierarchical prior that incorporates the assumption that the observed outcomes constitute only a small subset of the possible outcomes. We show how to effici...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملAn efficient approach for solving layout problems
This paper offers an approach that could be useful for diverse types of layout problems or even area allocation problems. By this approach there is no need to large number of discrete variables and only by few continues variables large-scale layout problems could be solved in polynomial time. This is resulted from dividing area into discrete and continuous dimensions. Also defining decision var...
متن کاملNML Computation Algorithms for Tree-Structured Multinomial Bayesian Networks
Typical problems in bioinformatics involve large discrete datasets. Therefore, in order to apply statistical methods in such domains, it is important to develop efficient algorithms suitable for discrete data. The minimum description length (MDL) principle is a theoretically well-founded, general framework for performing statistical inference. The mathematical formalization of MDL is based on t...
متن کامل